CORE 2016

2nd International Conference on Offshore Renewable Energy

12 — 14 September 2016

Glasgow City Hotel
Cambridge St, Glasgow
G2 3HN
UK

- Drinks Reception and Conference Dinner
- Workshop on Offshore Floating Wind Turbines—Support Structures
- Keep up to date with Offshore Renewable Energy Resources & Systems
- Drinks Reception and Conference Dinner
- Workshop on Offshore Floating Wind Turbines—Support Structures
- Keep up to date with Offshore Renewable Energy Resources & Systems
Conference Programme Day One: 12th September

08:25 — 08:55 Delegate Registration

08:55 — 09:00 Welcome Address

09:00 — 09:40 **Keynote Paper:** Wave and Tidal Energy R&D - Achievements and Direction, Professor Robin Wallace, The University of Edinburgh, UK

09:40 — 10:20 **Keynote Paper:** Status of Marine Energy, Professor AbuBakr S Bahaj, The University of Southampton, UK

10:20 — 10:40 **Invited Paper:** Tribology issues in Tidal Turbine Technologies, M. Stack, University of Strathclyde, UK

10:40 — 11:10 Break

11:10 — 11:30 **Invited Paper:** Tides and tidal power from a historical perspective, A. Borthwick, The University of Edinburgh, UK

11:30 — 11:50 The Multi Rotor Solution for Large Scale Offshore Wind Power, P. Jamieson, University of Strathclyde, UK

11:50 — 12:10 Reliability based format for the design of wind turbine jacket pile foundations, P.K. Das; M.R. Notley, E Padayattil; I. Cortizo; T. Hodgson; G. McCann; T. Camp, ASRANet Ltd, UK; Atkins Global, UK & DNV GL, UK

12:10 — 12:30 50 MW test scheme for new offshore wind technologies, B. Bizet, Danish Ministry of Energy, Utilities and Climate, Denmark

12:30 — 14:00 Lunch

10:20 — 12:30 **Parallel Session**

10:20 — 10:40 Study on utilisation of the amplified wave height inside a perforated chamber by a heaving plate model, P Krishnendu; R.Balaji, Indian Institute of Technology Bombay, India

10:40 — 11:10 Break

11:10 — 11:30 An environmental assessment of wave energy converter arrays and their effect on the surrounding wave field, B. Elsaesser, Queen's University Belfast, UK

11:30 — 11:50 Fatigue life assessment of existing offshore wind turbines, W. Weijtens, Universiteit Brussel, Belgium

11:50 — 12:10 Project schedule assessment with a focus on different input weather data sources, D. Bendlin, T. Panteleon; J.Buschmann; S. Parker, Fraunhofer IWES, Bremerhaven, Germany

12:10 — 12:30 An experimental study of “Jellyfish” ocean Wave Energy Converter, M. Masoumi; R. Maramara, State University of New York, Stony Brook, USA, Brimes Energy, USA

12:30—14:00 Lunch

14:00—17:30 **Workshop — See Page 10 for more details**

Workshop on Offshore Floating Wind Turbine: Support Structures, Dr Maurizio Collu, Cranfield University, UK

15:00—15:30 Break
14:00 — 14:20 Resource Assessment of Offshore Wind Farm Operation In the Caribbean, C. Cassar, ASRANet Ltd, UK

14:20 — 14:40 The Subhub Tidal Foundation Platform, J. Smith, QED Naval, UK

14:40 — 15:00 Assessment of tidal energy potential along the Gulf of Khambhat, Gujarat, India, S. Kumar; B. Ramakrishan; Vengatesan, Indian Institute of Technology Bombay, India; The University of Edinburgh

15:00 — 15:30 Break

15:30 — 15:50 Increased ROI from Offshore Wind turbines through Minimisation of Blade Angle Deviation and Rotor Imbalance, C. Heilmann; A. Grunwald; M. Melsheimer, BerlinWind, Germany


16:10 — 16:30 Resurrection of the VAWTs, E. Mak, New Forest, UK

16:30 — 16:50 A novel experimental setup to study long term performance of offshore wind turbines, S. Bhattacharya; G. Nikitas; N.J. Vimalan, University of Surrey, UK & VJ Tech, UK

16:50 — 17:10 Mesoscale Models as Alternatives to Meteorological Masts, P. Argyle; S. Watson, Loughborough University, UK

14:00 — 17:30 Workshop — See Page 9 for more details
Workshop on Offshore Floating Wind Turbine: Support Structures, Dr Maurizio Collu, Cranfield University, UK

15:00 — 15:30 Break

19:00 Civic Reception: Glasgow City Chambers, George Square, G2 1DU
Conference Programme Day Two: 13th September

8:40 — 9:20 **Keynote Paper**: The importance of understanding the flow impedance of tidal stream channels and how this might change turbine design and increase estimates of the tidal steam resource
Professor Stephen Salter, The University of Edinburgh, UK

9:20 — 10:00 **Keynote Paper**: Offshore Wind: The Cost Reduction Journey
Dr Ignacio Marti, ORE Catapult, UK

10:00 — 10:20 
Robotized manufacturing of rubber components for commercialization of the Uppsala University Wave Energy Converter Concept
E. Hultman, M. Leijon, D. Salar and E. Åberg, Uppsala University, Sweden

10:20 — 10:40 
Experimental testing of tidal turbines in realistic & idealised conditions
B. Elsaesser; C. Frost; P. Jeffcoate, Queen’s University Belfast, UK & Sustainable Marine Energy Ltd, UK

10:40 — 11:10 
Break

11:10 — 11:30 
Fuzzy Modelling and Identification for Sustainable Control Design of an Offshore Wind Farm
S. Simani; S. Farsoni; P. Castaldi, University of Ferrara, Italy; University of Bologna, Italy

11:30 — 11:50 
Performance Evaluation Of An Innovative Device To Transform Wave Power Into Electric Energy In Ports And Harbours
A. Danelli; M. Peviani, Research on Energy Systems, Italy

11:50 — 12:10 
Fatigue performance of GFRP composite tidal turbine
A. Rahman; V. Venugopal; J. Thiebot, The University of Edinburgh, UK & Normandie

12:10 — 12:30 
Development and commercialisation of a floating wind and wave hybrid
C. McConville, Floating Power Plant, Denmark

12:30 — 14:00 
Lunch

10:00 — 12:30 
Parallel Session

10:00 — 10:20 
Brief Study about Wind Energy as Renewable Energy: History, Sustainability And Impacts
M. M. Custodio, C. C. Lima, Escola Superior Dom Helder Câmara, Minas Gerais, Brazil

10:20 — 10:40 
Experimental verification of a back-to-back 2L-3L grid connection system for a marine current energy converter
S. Apelfrojd; K. Thomas; M. Leijon, Uppsala University, Sweden

10:40 — 11:10 
Break

11:10 — 11:30 
Pneumatic orifice calibration, investigation into the influence of test rig characteristics on calibration results
F. Thiebaut; P. Benreguig; J. Murphy, University College Cork, Ireland

11:30 — 11:50 
Effects of strain rates on the undrained shear strength of kaolin
V. Sivakumar; N. Satyajeet; P. Hoye, Queen’s University Belfast, UK

11:50 — 12:10 
Risk assessment of an offshore wind turbine and remaining useful life estimation of the power converter. Improving availability by prioritising failures with higher risk to operation
M. Sepulveda; P. Davies; M. Spring; J. Shek; P. Thies; E. Oterkus, The University of Edinburgh, UK & Lloyd's Register, UK

12:10 — 12:30 
Non-floating Non-submersible sea wave energy converter
G. Bharathi, Central Leather Research Institute, Chennai

12:30 — 14:00 
Lunch
# Conference Programme Day Two: 13th September

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
<th>Organization(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Parallel Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:20</td>
<td>The effect of wave-current interactions with Tidal Stream Turbines on 3D flow measured with Particle Image Velocimetry in a laboratory flume</td>
<td>L. Jordan; S. McLelland; B. Murphy; D. Parsons, University of Hull, UK</td>
<td></td>
</tr>
<tr>
<td>14:40</td>
<td>Tribological approaches to developing smart materials for tidal turbines using erosion maps</td>
<td>R. A. R. Ahamed, University of Strathclyde, UK</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>Coupled RANS-VOF modelling of floating tidal stream</td>
<td>E. Ransley; S. A. Brown; D. M. Greaves; S. Hindley; P. Weston; E. Guerrini</td>
<td>Plymouth University, UK; Mojo Maritime Ltd, UK; A&amp;P Group Ltd, UK &amp; Modular Tide Generators Ltd UK</td>
</tr>
<tr>
<td>15:50</td>
<td>The SeaWEED energy converter: an introduction</td>
<td>A. Vogler, T. Gardiner, B. Lundrigan, H. Peng, W. Qui</td>
<td>University of the Highlands and Islands, UK, Memorial University of Newfoundland, Canada</td>
</tr>
<tr>
<td>16:10</td>
<td>Actuator-Line CFD Modelling of Tidal Stream Turbines</td>
<td>D. Apsley; P.K. Stansby; T. Stallard, The University of Manchester, UK</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>A Lookup Table Approach to Determining Wind Turbine Operational Fatigue Loading from Wind Field Measurements</td>
<td>E. Hart; M. Keegan; D. McMillan, University of Strathclyde, UK</td>
<td></td>
</tr>
<tr>
<td>16:50</td>
<td>Calibration of wave fatigue conditions in coupled wind-wave analysis of Offshore WTG Substructures</td>
<td>T. Hodgson, N. Sampathkumar, I. Cortizo, ATKINS, UK</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Offshore renewable energy in Canary Islands. Energy resource and testing activities</td>
<td>J. González; V. Monagas; X. Remírez; E. Hernández-Brito; O. Llinás, PLOCAN, Spain</td>
<td></td>
</tr>
<tr>
<td>14:20</td>
<td>Analysis of End-Stop Parameters on the Performance Heaving Point Absorber Wave Energy Converters</td>
<td>C. Wright, V. Pakrashi, J. Murphy, University College Cork, Ireland</td>
<td></td>
</tr>
<tr>
<td>14:40</td>
<td>Non-Linear Numerical Simulation of a Point Absorber Type Wave Energy Converter</td>
<td>S. Jin, B. Guo, R. Patton, J. Gilbert &amp; M. Abdelrahman University of Hull, UK</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>A Methodology for representing the effect of vertical-axis turbines on the flow</td>
<td>V. T. Nguyen; S. S. Guillou; J. Thiebot; A. S. Cruz, Normandy University, UNICAEN, LUSAC, France, Hanoi University of Mining and Geology, Vietnam</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>Reducing the Levelised Cost of Energy on Tidal Energy converters through an Adaptive Control System Optimisation</td>
<td>J. P. Echenique, The University of Edinburgh, UK</td>
<td></td>
</tr>
<tr>
<td>16:10</td>
<td>An Innovative Electromechanical Ocean Energy Converter</td>
<td>E. Renzi, M. Discacciati, Loughborough University, UK</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Selection of the most appropriate Life Extension Strategy for Offshore Wind Turbines using Multiple Criteria Decision-Making Technique</td>
<td>M. Shafiee; I. Animah, Cranfield University, UK</td>
<td></td>
</tr>
<tr>
<td>16:50</td>
<td>Optimization of the trade-off between the lifecycle costs and reliability of wind turbine</td>
<td>A. H. Nithin, P. Omenzetter, University of Aberdeen, UK</td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>Conference Dinner:</td>
<td>Glasgow City Hotel, Cambridge St, Glasgow, G2 3HN, UK</td>
<td></td>
</tr>
</tbody>
</table>
**Conference Programme Day Three: 14th September**

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00—09:40</td>
<td><strong>Keynote Paper:</strong> Challenges in the design of foundations for offshore Wind Turbines. Subhamoy Bhattacharya, University of Surrey, UK</td>
</tr>
<tr>
<td>09:40—10:00</td>
<td><strong>Invited Paper:</strong> The Hydrodynamics of floating air-filled bags for wave energy conversion, D. Greaves, Plymouth University, UK</td>
</tr>
<tr>
<td>10:00—10:20</td>
<td>Applicability of Vertical Microstructure Profiler measurements in high current streams, S. Guillou; E. Poizot; Y. Méar; M. Shahsavariard; A. H. Birjandi; E. L. Bibeau, LUSAC, University of Caen, France; University of Manitoba, Canada</td>
</tr>
<tr>
<td>10:20—10:40</td>
<td>Combined loads of wind and waves on offshore floating wind turbines, J. Guichard, Plymouth University, UK</td>
</tr>
<tr>
<td>10:40—11:10</td>
<td>Break</td>
</tr>
<tr>
<td>11:10—11:30</td>
<td>An innovative PTO for a point pivoted absorber for wave energy conversion, A. Vogler; D. Coiro; G. Troise; F. De Luca; L. Castellini; G. Alessandrini; C. Greenwood, University of the Highland and Islands, UK; University of Naples, Italy; Seapower Scrl, Italy &amp; UMBRA Cuscinetti S.p.A., Italy</td>
</tr>
<tr>
<td>11:30—11:50</td>
<td>A Simulation Tool to Enable design for Reliability for Tidal Turbine, C. Bittencourt, B. Waldron, A. Zymaris, N. Kakalis, DNV GL, Greece; UK</td>
</tr>
<tr>
<td>11:50—12:10</td>
<td>Adaptive Fault Detection and Tracking for a Wind Turbine Generator using Kalman Filter Raed, K. Ibrahim; A. Daniyan; S. J. Watson, Loughborough University, UK</td>
</tr>
<tr>
<td>12:10—12:30</td>
<td>Risk and reliability based maintenance planning for offshore wind farms using Bayesian statistics, M. Florian &amp; J. D. Sørensen, Department of Civil Engineering, Aalborg University, Denmark</td>
</tr>
<tr>
<td>12:30—14:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>09:40—12:30</td>
<td><strong>Parallel Session</strong></td>
</tr>
<tr>
<td>09:40—10:00</td>
<td>Comparative study of combined concepts STC and SFC with respect to functionality and survivability based on numerical analysis, C. Michailides; N. Ren; Z. Gao; T. Moan, Liverpool John Moores University, UK; NTNU, Norway &amp; Dalian University of Technology, China</td>
</tr>
<tr>
<td>10:00—10:20</td>
<td>Assessing the full scale performance of tension pile foundations under monotonic and cyclic shearing using direct shear tests, S. Donohue; P. Bergamo, Queen's University Belfast, UK</td>
</tr>
<tr>
<td>10:20—10:40</td>
<td>Life Extension for Wind Turbine Structures and Foundations, T. Rubert; P. Niewczas; D. McMillan, University of Strathclyde, UK</td>
</tr>
<tr>
<td>10:40—11:10</td>
<td>Break</td>
</tr>
<tr>
<td>11:10—11:30</td>
<td>Hydrodynamic Response Of Three And Four Column Floater For Vertical Axis Wind Turbine, K. Rajeswari; S. Nallayarasu, IIT Madras, India</td>
</tr>
<tr>
<td>11:30—11:50</td>
<td>Development of an economical and insured TLP substructure for a 6MW wind turbine – use of steel concrete composite material, F. Adam, GICON Consult GmbH, Germany</td>
</tr>
<tr>
<td>11:50—12:10</td>
<td>Developing a commercial scale Salter’s Duck WEC device, R. Maramara; M. Masoumi, Brimes Energy, USA, State University of New York, Stony Brook, USA</td>
</tr>
<tr>
<td>12:10—12:30</td>
<td>Scada-Based Thrust Force Estimation of an Offshore Wind Turbine, N. Noppe, A. Iliopoulos, W. Weijtjens, C. Devriendt, Offshore Wind Infrastructure lab (OWI-lab), Belgium</td>
</tr>
<tr>
<td>12:30—14:00</td>
<td>Lunch</td>
</tr>
</tbody>
</table>
Conference Programme Day Three: 14th September

14:00 — 14:20 Validation of linear model for wave-current interaction at tidal energy site, G. Crossley; E. Mackay; S. Day; H. Smith; D. Ingram, DNV GL, UK; University of Strathclyde; University of Exeter & The University of Edinburgh

14:20 — 14:40 Choices of Turbulent Closure Model for Hydrodynamics Simulation in the Pentland Firth, A. Rahman; V. Venugopal, The University of Edinburgh, UK

14:40 — 15:00 Empirical Analysis of the Wave Climate at the Danish Wave Energy Centre, A. Têtu; J. P. Kofoed, Aalborg University, Denmark

15:00 — 15:30 Break

15:30 — 15:50 Mechanical Wave energy converter with oscillating arm: Experimental investigations, S. Chandrasekar-an; B. Raghavi, Indian Institute of Technology Madras, India

15:50 — 16:10 An overview of the monitoring activities of OWI-lab in the Belgium offshore wind-farms for the optimization of design, O&M and life-time assessment, J. Helsen, C. Devriendt, W. Weijtjens, P. J. Jordaens, S. Milis, OWI-lab, Belgium

16:10 — 16:30 The Articulated Wind Column (AWC) as a cost effective solution for mid to deep water environments, G. Lees, ODE Limited, UK

14:00 — 17:10 Parallel Session

14:00 — 14:20 Challenges in Representing Tidal Turbine Using Actuator Disc Concept for Large Scale Ocean Modelling, A. Rahman; V. Venugopal; J. Thiebot, The University of Edinburgh, UK & Normandie University, France


14:40 — 15:00 Message Passing for Optimising Electricity Distribution, E. Harrison, D. Saad, K. Y. Michael Wong, Aston University, UK

15:00 — 15:30 Break


15:50 — 16:10 Steel / concrete connections for floating wave energy converters, L. Ewart; D. Findlay; N. Barltrop; P.R.Thies; T.Stratford, The University of Edinburgh, UK; Albatern, UK; University of Strathclyde; University of Exeter, UK

16:50 Conference Close
Council named him as one of the Prof Robin Wallace Energy" Executive Committee of the International Energy Agency

Prof Robin Wallace

Prof. Robin Wallace graduated B.Sc. in 1976 and Ph.D. in 1990 at the University of Edinburgh. Between these times he worked for Parsons Peebles Motors and Generators project-engineering turnkey power generation systems around the world, mainly in small-hydro. He holds a personal chair in Renewable Energy Systems and founded The Institute for Energy Systems in the School of Engineering at the University of Edinburgh where he is now Dean International in the College of Science and Engineering. His research interests include marine energy development and smart-grids, specifically the interaction of distributed renewable energy generation with the autonomous electricity networks. He has has supervised 18 PhD students to completion, while publishing over 100 papers. He is Executive Director of the EPSRC SuperGen UK Centre for Marine Energy Research, a Director of the FloWave Ocean Energy Research Facility and a founding Co-Director of the Scottish Energy Technology Partnership. He has established research collaborations between the Institute and partner universities in many countries including USA, Canada, India, Taiwan, China and Chile. He is a Fellow of the Royal Society of Edinburgh and The Institution of Engineering and Technology and is a Chartered Electrical Engineer.

Prof Stephen Salter

Stephen Salter is Emeritus Professor of Engineering Design at Edinburgh University. After an apprenticeship in the aircraft industry as fitter and toolmaker on hovercraft and the Black Knight rocket he did a degree at Cambridge. He has worked on noise recording from birds eggs, astronomical instruments, robots, energy from wind, waves and tidal streams, desalination, voter-friendly traffic congestion, computer-controlled hydraulics, flood prevention, mine clearance, suppressing explosions, increasing the capacity of road bridges and now on the design of seagoing hardware to reverse global warming by making clouds whiter. Reports of his retirement are exaggerated. He likes very short introductions.

Prof Subhamoy Bhattacharya

Professor Subhamoy Bhattacharya(Suby) holds the chair in Geomechanics at the University of Surrey since October 2012 and is also a visiting fellow at the University of Bristol. He previously held the position of Senior Lecturer in Dynamics at University of Bristol, Departmental Lecturer in EngineeringScience at the University of Oxford, Junior Research Fellow of Somerville College (University of Oxford), College Lecturer at Brasenose College and Lady Margaret Hall (University of Oxford). Professor Bhattacharya earned his doctorate from the University of Cambridge investigating failure mechanisms of piles in seismically liquefiable soils. Professor Bhattacharya had many happy years working in the Civil/Offshore Engineering consultancy: Staff engineer and project manager at Fugro Geo Consulting Limited (2003 to 2005), Consulting Engineering Services (I) Limited (now Jacobs).

Prof AbuBakr Bahaj

AbuBakr Bahaj leads the 55-strong Energy and Climate Change Division at the University of Southampton, where he completed his PhD, progressing from a researcher to a Personal Chair in Sustainable Energy. For more than 25 years, Professor Bahaj has pioneered sustainable energy research and established the energy theme within the University. His major research programmes can be found at www.energy.soton.ac.uk. These include Marine Energy, Solar Photovoltaics, Cities and Infrastructure, Data and Modelling, Energy and Behaviour, Energy and Buildings, Energy for Development, Environmental Impacts, and Microgeneration Technologies. Professor Bahaj’s work has resulted in over 270 articles, published in academic refereed journals and conference series of international standing. He founded the International Journal of Marine Energy (IJOME) which he is the Editor-in-Chief. In 2012, Prof Bahaj was appointed Chief Scientific Advisor to Southampton City Council—believed to be the first such appointment in the UK and in 2014, the UK’s Science Council named him as one of the UK’s 100 leading practising scientists.
Course Overview
The need to further harness offshore wind resources to increase renewable energy generation is pushing offshore wind turbine projects into waters deeper than 50 m, where floating support foundations are more economically viable than fixed support foundations. After a number of prototypes deployed offshore, the first offshore floating wind farms have been approved and are being developed (such as Oregon WindFloat Pacific’s floating wind farm and Hywind Scotland Pilot Park4).

The novelty of the fields is raising a lot of questions: why floating? Which floating support structure is the most suitable? How to perform their conceptual design taking into account the complex set of requirements? In this workshop, we will explain first of all why floating wind turbines can be advantageous, and which one are the main challenges.

We will then see how floating wind turbine systems are classified, covering the fundamentals, and we will propose a methodology to choose the most suitable floating support structure for a given wind turbine and location, exploring the design driving criteria.

To finish, we will see a preliminary design methodology for floating wind turbines.

You Will Learn To:
- Explain what are the main advantages and challenges for offshore floating wind turbines and why the industry is moving toward floating wind turbines
- Understand the methodology used to classify offshore floating wind turbine systems, and recognize the main advantages and disadvantages of each type
- Develop and use a flexible multi-criteria decision methodology to determine the most suitable floating support structure, for a given wind turbine and location
- Fundamental steps for the conceptual design of an offshore floating wind turbine

Course Outline
- Introduction
- Why floating?
- Main floating support structure types, and classification
- A multi-criteria decision methodology to choose the most suitable floating support structure
- Understand the basic steps of the conceptual design of a floating support structure for an offshore floating wind turbine

Material Provided
The attendants will be provided with a copy of the presentation, and copies of relevant journal and conference papers authored and co-authored by the instructor.

Instructor
Dr. Maurizio Collu is Senior Lecturer in Dynamics of Offshore Structures at Cranfield University, CEng, MRINA, FHEA, MEI. He is also the Course Director of the 5 MScs in Offshore and Ocean Technology at Cranfield University. Working in the Offshore Renewable Energy Engineering Centre, he is leading the conceptual and preliminary design of offshore support structures for the emerging floating wind turbine industry.

He collaborates with renewables start-up and SME performing the conceptual and preliminary designs of floating support structures for the offshore renewable devices.

He had been in charge of the conceptual design of the floating support structure in the £2.8m ETI funded project NOVA, and coordinated the development of a coupled model of dynamics for floating wind turbines for the EU funded FP7 project H2Ocean.

He is serving on the ITTC Ocean Engineering Committee from September 2014, and he regularly presents his work at international seminar and peer-reviewed conferences on the topic (OMAE, EWEA, ISOPE). Maurizio sits in the OMAE Ocean Renewable Energy technical committee since 2012. He regularly publishes on the topic on international, peer-reviewed journals, and is reviewer for a number of ocean engineering and energy international journals. He wrote the chapter on “Design of Offshore Floating Wind Turbines” in a new multi — contributor Elsevier book entitled “Offshore Wind Farms: Technologies, Design & Operation” to be released in March 2016.
The Venue for the conference will be located in the heart of Glasgow city centre at The Glasgow City Hotel. With a central location in the heart of Glasgow City Centre, and only 15 minutes from Glasgow International Airport, Glasgow City Centre Hotel is a popular choice for both business visitors and leisure travellers alike. You really are in the heart of the city and you will find this luxury Glasgow hotel is the ideal base from which to explore the historic, sporting and leisure attractions of a former European Capital of Culture.

**The Glasgow City Hotel**  
Cambridge Street,  
Glasgow - G2 3HN

CORE 2016 Delegates will also be treated to a Civic Reception in Glasgow’s Picturesque City Chambers. Built in the 19th Century, the building is eminent example of Victorian Architecture. Famous visitors, including the British Royal family have signed the visitor book here.

**Glasgow City Chambers**  
George Square  
Glasgow - G2 1DU

Conference Dinner:  
13th September 2016  
19:00

Civic Reception:  
12th September 2016  
19:00
You can register for the CORE 2016 Conference by sending us the below given form or register online at http://www.asranet.co.uk/Conferences/OffshoreRenewableEnergy

<table>
<thead>
<tr>
<th>Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (PLEASE PRINT)</td>
</tr>
<tr>
<td>Designation</td>
</tr>
<tr>
<td>Organization</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Telephone</td>
</tr>
<tr>
<td>Fax</td>
</tr>
<tr>
<td>Email</td>
</tr>
</tbody>
</table>

☐ I wish to register for the Conference at a normal cost of £450 (£300 for students only) plus VAT (UK only)

☐ Please invoice me at the above address

☐ Please send me information on local hotels

Signature  
Date  

The completed forms together with a cheque in pounds sterling payable to ASRANet Ltd. should be sent to us by post or email:

ASRANet Ltd.
5 St Vincent Place
Glasgow
UK
G1 2DH
E: info@asranet.co.uk
W: www.asranet.co.uk
Sponsorship & Exhibition Space

Sponsorship

Cost £2,250

Package Includes

- 2 Free Delegate Registration
- Company Logo in the Conference Programme
- Company Logo in the Book of Abstracts
- Company advert in the Book of Abstract (A4 Size)
- Advert in the Conference Proceedings (USB)

Exhibition

Cost £1,125

Package Includes

- 1 Free delegate registration
- 1 Display table (1800 x 1200 mm)
- Display material: Published material, Structural component
- Display Banners

Contact

Glyn Butler
Business Development Manager

ASRANet Ltd
St Georges Building
5 St Vincent Place
Glasgow
G1 2DH

E: glyn.butler@asranet.co.uk
T: +44 141 275 4801
F: +44 141 275 4800
W: www.asranet.co.uk